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ABSTRACT

The leading order finlte-width corrections to the equation of motion de-

scribing the motion of a domain wall are derived. The r6gime in which this

equation of motion is invalid is discussed. Spherically and cylindrically sym-

metric solutions to this equation of motion are found. We also clarify a miscon-

ception that has arisen in recent years regarding the rigidity (or otherwise) of

cosmic strings.
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There has recently been renewed interest in domain walls as possible sources o£ large

scale structure in the universe _. With a few exceptions, most of the work done on the

motion of walls has used the zero thickness approximation. The numerical studies of

Widrow 2 and Press, Ryden and Spergel 3 have given much insight into the dynamics and

evolution of finite thickness walls; however, it would be desirable to develop an analytic

description of domain wall evolution which would preferably be model independent. In

other words, we would like to obtain an approximate equation for a wall Jurface without

having to calculate the detailed dynamics of the scalar field.

_re start by deriving the equations of motion for an infinitely thin domain wall (which

turns out to be a generalization of the Nambu equation of motion for strings). Then we

derive the leading order corrections to this equation for walls of finite thickness due to the

extrinsic curvature of the wall and the wall's self gravity. We do this 5y using an expansion

scheme for the field theoretic equations of motion. For the non-gravitating case we check

that the results obtained using the less satisfactory "effective action" method are the same.

Next we comment on a misconception that has arisen in recent years regarding the rigidity

of cosmic strings 4. Returning to wails, we proceed by discussing the relative importance of

the gravltatlonal and field theoretic correction terms, and under which circumstances each

are relevant. We then apply our equations to a few simple cases to illustrate the rigldifying

(or otherwise) effect of the correction. We compare our results with those of Widrow, and

discuss the breakdown of our approximation.

A domain wall can occur during a phase transition into a broken symmetry state

where the vacuum manifold has two or more disconnected regions. The wall becomes the

boundary between regions lying in different vacua. To model the essential features of a

thick wall, we will consider a scalar field with Lagrangian

L

(we shall take the metric to be of the form (-, +, +, +)) and equation of motion

av( )=o,
a4



which contain a ¢ _ -¢ symmetry. V(_) is assumed to have two or more minima at

non-zero values of _. Typically, V(¢) is taken to be a Sine-Gordon or A¢ 4 potential. We

will consider the case where < _ >---_ -t- < _ >0 on either side of the wdl, and therefore

define the wall surface, _, to be the three dimensional surface on which ¢ = O. In the

typical example of a A_ 4 wall in flat space, we have

¢0 = ,1tanh(,/  z)

T.b= - VozVbZ)•

In this case, we see that

1

(1)

represent the thickness and energy per unit area of this wall respectively; these will be our

expansion parameters for the wall equations. More generally, if 7/represents the symmetry

breaking scale, and A the self coupling of the field, then we expect the thickness of the wall

always to be O(1/V_r/) and its energy per unit area O(v/Ar/S).

This is the solution for a fiat domain wall in a flat spacetime, in order to model a more

general domain wzd.l, we need to assume that the thickness of the wall is much smaller than

both the extrinsic curvature of the wall mad the horizon length (which is of order (G_r) -_ ).

We may therefore split the field equations into their components orthogonal and tangential

to Z, the wM1 surface. This was done in ref. 5 using a Gauss Codazzi formalism, and so

we will merely p_raphrase the method here, and refer the reader to [5] for the details.

We let n* be a unit geodesic normal vector field to _, and let z be the proper length

along the integral curves of n". Each z =eonst. surface then has unit normal n_, intrinsic

metric h_b and extrinsiccurvature Kab defined by

hab = gab -- nanb

(2)
K.t, = h_V_nb •



One can now use the Gauss Codazzi formalism to write the coupled Einstein-scalar equa-

tions in terms of hab, gab and ¢:

£.,,h,.b = 2K,_b

£,.,K,,b =(°) R,,b + 2K,,,.K_, - KK,.b - 8rcGD,,¢Db¢ - 8_rGV(¢)h,,b

(3a)

17,,,£,,,¢ + KE,,¢ + D,,D"¢ - c9V(¢). = O,
o¢

where Da and (*)R_b are the derivative operator and Ricci tensor of the wall surface.

Now consider the new variables

(3b)

u=z/e X=¢/n

with e defined by (1), then/:n -- 7_-_1e in this coordinate system. Moreover, since we can set

V(¢) = ._rl4U(X) = }e-lo.U(X), where U(X) will now be 0(1), we may rewrite equations

(3) as

cghab

Ou

OK,,b

Ou

- 2eK,,b

-- -3_rGtrU(X)h,,b + e(C')Rab + 2KacK_, - KKab) - 6rrGa'e2D,,XDbX

(4a)

02X 10U(X) eKOX
i)u 2 2 OX + _ + e2D"D"X = 0. (4b)

We now write our solutions in terms of a power series in e. Clearly the zeroth order solution

to equation (4b) is X = Xo(u), where Xo(u ) is the flat space planar wall solution (tanhu

for the A¢ 4 wall). We also see that hoa b is constant, and Koa b is given by

/.

Koa b -- Koab(O ) -- 3n.Ga.ho,.b J
duU(X),

which is just a constant term plus an odd function of u.

Taking the difference of this last expression on either side of the wall yields the Israel

equations for the exterior spacetime to the wall. On either side of the wall the Einstein
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constraint equation (8)R + K,_bK ab - K 2 = 0 is satisfied. Taking the difference of the

constraint equation on either side of the wall and using the Israel equation we find that

K0(0 ) = 0. There is another way to derive this result using only the scalar equation

(4b). Multiply equation (4b) by OX/Ou and integrate from -oo to oo using the boundary

conditions on X to obtain

(x')'K +  X'D°D"X = o. (51

Here a prime denotes derivative with respect to u. Now evaluating equation (5) to zeroth

=o

order in e we find

__: du(X:)_Ko = 0

g0(0) =0.

But this is just the wave equation for the wall surface. Thus, to zeroth order in wall

thickness |ndep endent of the wall model, or any ansatz for the fields and even independent

of gravity, the wall must obey a 'Nambu' equation of motion.

We will now investigate the case where the self gravity of the wall is negligible in the

r_gimes of interest, in other words when (Ge) (< e. Here, our equations of motion for

X and h,.b remain the same, but the equation for Kab simplifies. Since we are neglecting

gravity, the metric is flat and one can show that (S)R,_, = KK,q, - K,_".K_b. Now using

equation (4a) and neglecting all terms proportional to Go" we find

cOK%

Ou
-- = -eK°eK%.

The solution of this equation is

K°b = K°b(O) - euK°c(O)K%.

Using the trace of this equation in equation (5) we find

K(O)/__du(X')2 + e/__du[-u(X')2K"b(O)K_',_ + XtDoD"X] =0. (7)
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We now find K(0) to second order in e by using an iterative procedure on equations (4b),

(6) and (7). Evaluating equation (7) to zeroth order in e gives, as before, K0(0 ) = 0. It

then follows from equation (6) that K 0 = 0. Now evaluating equation (4b) to first order

and using the boundary conditions for X yields X 1 = 0. Equation (7) to first order then

gives K_(0) = 0. Now use equation (6) in equation (7) and evaluate to second order to

obtain

where

=_ K,(O) = -otK_KbocKCo, ,

--0

duu2X:2
f2 ° e X,2 >0. (S)

oo 0

Thus to second order in the wall thickness, the wall no longer obeys a Nambu equation,

but acquires a term cubic in the curvature of the wall:

K -4- ae2K:bKbocK:,_ = O. (9)

For the case of the A¢ 4 wall, one finds that a = (_.2 _ 6)/12 and for the Sine Gordon case

ct -- _.2/12.

We now briefly remark upon walls with significant self-gravity. In this case, we have

not only to worry about the behaviour of the wall surface itself, but also the way it affects

the spacetime surrounding it. We therefore end up with two sets of equations which

must be satisfied by the gravitating domain wall, the internal geometric equation, and the

external Israeltype equation. One can retaingravity in the above calculationifone wishes,

and the geometric correction turns out to be similarand second order in e. However, the

correctionsto the Israelequations were worked out in [5]for the case of a A¢ 4 domain wall

in vacuo, and were found to be firstorder in the wall thickness:

[k.b] = -47rG_'hab , (10)

where

29
& : o" (1 + _reG. (41n2 - _)) ,
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and [kab] is the jump in the curvature across E, the surface representing the domain wail.

For different models, the numerical factor in b will change, but the form of the equation

remains the same. Thus, for a strongly gravitating wall, the greater effect on the wall

motion is due to its self gravity. We will return to this point later.

Let us now consider the question of whether we can derive the equation of motion (10)

in the absence of gravity, by an effective action argument. This would involve expanding

the action

?

s = j,/-_[½(vo¢) _- v(¢)]

in terms of the wall thickness, and integrating out perpendicular to the wall. The method

would involve using the coordinate system we have already set up, and proposing an ansatz

for the scalar field: ¢ = ¢0(z) + 6¢, where ¢0 satisfies

02¢0 OV
O_

Oz 2 0¢0

and 6¢ satisfies

026¢ K 0¢0 0 _ V
a_---_+ D°D_6¢ + Oz O¢o26¢ = 0.

The action would then be given by

1]s = sic0]+ _ J-:_--06¢

-_{[ 1_,_= _0 - v(¢0)][z 1 _2 / t2-2 1 t+ _ _,, - Khl] + i_¢K¢0}. (zz)

If one used the string argument, one would argue that 6¢ would have to be proportional to

K, and thus that the final correction term would be a K 2 term. The equation of motion for

this action is derived in the appendix. Noting that the action and therefore the equation

of motion is valid only to order e2 the equation of motion to order e2 is

+ + =o.

where X o satisfies

DADAXo = O.
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Thus to second order the equation of motion is

D A DA X2,_ = -a _ D s D A Xo,_ DB DC Xbo DA D c Xob ' (12)

in agreement with equation (10).

At this point we want to digress momentarily to address a misconception that has

arisen concerning the rigidity of cosmic strings. The effective action for strings accurate

to O(e 2) was argued to be s

S = -_ / d_o'x/'Z-h [1 + e2A(K_ + Kg)], (13)

where A was some integral of the first order perturbations to the string fields. Using this

action and the techniques of the appendix one can show that the equation of motion at

zeroth order is just K o = 0 but this then implies that the first order perturbations to the

fields vanish and hence A -- 0. Thus the correct equation of motion for strings accurate to

order e2 is

gl (0) =/(2(0) = 0.

However, even if for some exotic type of string A was not equal to zero this would still

be the correct equation of motion to second order. This is because for consistency of the

expansion the zeroth order solution has to be used in the equation of motion to second

order obtained by varying K s.

Thus contrary to previous claims 6 to order e2 strings are neither rigid nor antirigid.

To determine their rigidity (or otherwise) the effective action to at least O(e 4) must be

obtained.

Continuing with domain walls we now apply equation (10) to a few simple eases.

Firstly we consider the collapse of a cyllndrical wall. Taking cylindrical coordinates

(t,p,¢,z) for the 4-space and taking the radius p of the cylinder at time _ to be P(t),

the normal to the wall surface is n.. -- (1 - P2)-l/2[Vap- PV..$]. Using equation (2) to

flnd the extrinsic curvature of the wall we obtain

K"b=(1--P2)-3/2 [ 1-a62 ]



where Ca and ua are _ven by ¢o = pV,¢ and us = (1 -/32)-l/2[V,J-/3Vap]. Thus the

equation of motion to zeroth and first order in e is

/5 1

K(O) = + = o

i.eo

/32 -- 1

P

This implies that

(14)

where Pi = M is the maximum radius of the cylinder and M is its mass per unit length.

This equation can be solved to obtain

where ti is the time at which P = Pi.

To second order the equation of motion is

K(0) 2 J o= -e aK_K_ K,_.

Using the zeroth order equations of motion it is easy to show that the correction to the

equation of motion is zero. Thus (14) is true even to second order. The equation of motion

is valid provided

as was previously suggested by Widrow a. Note that this does not agree with the naive

expectation that the thin wall approximation is valid so long as the spatial radius of

the cylinder is much greater than the wall's thickness. The time components of K_ are

import ant !



M _1/2Now consider the collapse of a spherical wall of maximum radius Ri = (4-'-_¢J and

mass M. In spherical coordinates (t, r, 8, ¢) the wall's radius is R(t) and the normal to

the w_Ussurfaceis ,_, = (1- k2)-'/2[V°_- kV,t]. The extrinsiccurvatureof the w_Uis

given by

K% = (1 -/_2)-_/2 [ 1-/_2 ]X q*b -- ku_'b

whereq_b- _(V°0VbO+ sin20V°¢%¢) _d _o = (1 - k2)-''[Vot - RVo_].

The equation of motion to zeroth and first order in e is

K(0)= (1-ho_) _/2 + RoCl-h_o)'/2 =0'

which implies that

(R)'(i- R'o)= _ .

This equation was integrated numerically using Romberg's method of order 10 and the

results is shown in figure 1. To second order in • the equation of motion is

h_ = 20 -/_I) 6,_,,

Note the correction term is positive and therefore finite thickness corrections lead to a

slower collapse of the wall.

Equation (15) can be integrated to obtain

Riz = --_/I -- z4eW(v -°-1) (16)

where

Ra Ro 2e2 a

= R_' _'= _--T' w = a-T

Figure 1 shows the result of numerically integrating (16) using a fourth order Runge-Kutta

method for the case W=0.1. The equation (16) would be expected to be a poor description
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of the collapse of the wall when (w(Y-8-1))' _0.1, i.e.
2

1/6

and invalid when IK [ ~ • i.e. when V "_ wll6 [again in agreement with Widrow2].

Note again that this is much sooner than naive expectations that would suggest that the

approximation fails when the spatial radius of the sphere is O(e).

In the case when flu. >> __ where RH "_ (Gw) -1 the horizon size associated with the

wall, the most important corrections to the equation of motion arise due to self-gravity.

Using (11) [see [5] for more details] the equation of motion for the collapse of a spherical

wall in the vacuum can be written to first order in G(r_ti as

Z 4

Ri_ 2 = 1 - (1 - S(1 -- y3))2 ' (17)

where

z = RI/R_, S = 2_uGRi.

In figure 2 we show the results obtained by integrating (17) for the case S = 0.1. Gravity

can clearly be seen to reduce the rate of collapse of the wall.

Finally, it is easily checked that the exact solutions to the i_eld theoretic equation of

motion obtained by Yachaspati 7 satisfy (10) to order e_.

To summarize, we have found the second order correction to the equation of motion

of a domain wall, and exhibited that this gives a rigidity to the wall. We have shown

that gravity, when important, has a stronger effect on the wall, also tending to make it

more rigid. We estimated the breakdown of our approximation, which occurs typically well

before the spatial radius of curvature becomes of the order of the wall thickness. Further,

once this approximation does break down, corrections to all orders in thickness become

important; in other words, only a field theory description will suffice to describe such a

region.

For the case of cosmic strings, we argued that there was no correction to second order

in the width of the string, therefore strings are Nambu to a very high accuracy, unless they
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exhibit r_gimesof high extrinsic curvature (such as cusps). At such places, only a field

theoretic description will suffice. However, note that this breakdown will occur well before

the spatial radius of curvature becomes of order the string width.

Finally, Nielsen and Olesen were interested in a vortex solution exhibiting Nambu

properties in order to get a phenomenological representation of a dual string. The lack

of the second order correction term in the case of strings shows that the "V_(1 + k2) ''

lagrangian first suggested by Polyakov a, has no physical manifestation.

Appendix.

Here we will find the equations of motion associated with the action (11). In order to

do this, we use an alternate definition of the curvature in terms of the coordinates of E,

which we will denote as X"(_A), _A being the intrinsic coordinates of the surface E:

DADBX _ = KABn a (A1)

We therefore need to find the equations of motion associated with the action

S = -¢ / dS_"h[1 + fle2(DADAX")_ - Ae2DADBX_DADBX_]. (A2)

where Al = a/2. In varying the action with respect to X a, we must remember that both

the metric, hAB, and the connection, hCAB depend on X _. For the metric we have:

6haB = 6X ,AX ,8 + X ,A6X ,B (AS)

Therefore, varying S with respect to X _ gives three pieces The first term is the variation

of the volume element, this gives, upon integration by parts,

(A4)

The other two terms contain the variation

6[hACDADBXa] = -hAF'hC°6hmDDADBX a + DCDB6X a _'AC6h m X a (A5)-- '* AB ,E

the last term of which vanishes when contracted with DDX,_, which is normal to the wall.

12



Substituting from (A3) and (A5) and integrating by parts asnecessarygives

6S2= a/ge 2/d3eV'-J-h{4Dc [DaDBXbDADCXbDAX,,] + 2(DADA)2Xa}6X ", (A6)

and

(AT)

Now, the Gauss Codazzi equations imply

RAC = KKAc -- KABKBc = DBDBXbDADcX b -- DADBXbDBDcX b (AS)

and hence

/d3_v/-_{4Dc [DBDaXbDADCXbDAX.] - 2DB [RABDAXo]_$3 _ _ _2

(A9)

+ 2DADADBDBXa }6X a.

Thus, imposing 6__/_s_ 0, (A4), (A6) and (A9) give as the equations of motion for the wall:6X 6 --

DA [DAXo[1+ Z 2(DoD°Xb) 2- a 2(DBDoX°)2]] + 2(Z- A)  (DADA) X.
(A10)

+ 4(/9 - A)e 2 Dc [DBD BX_,DAD cXbDAX,,] - 2Ae2DB [R AaDAX,,] = O.

Now, from our previous work, we know that the first order corrections vanish, and hence

_3 = A. This can also be deduced if we use the zeroth order form of the above equation

(DADAX a ----0) and input this information back into the argument at the stage of 'solving'

for the field perturbations. (One may regard this as slightly circular.) However, using this

simplification one obtains

DADAXa[1 + Ae_R] + 2Ae2DBDAX.,DBDCXbD'4DcX_, = 0. (All)

Which is the equation of motion we wished to derive.
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Figure Captions

(1)The collapse of a spherically symmetric domain wall to zeroth order (solid line)

and second order (long dashed Line). The horizontal dashed line corresponds to Y =

(2)The collapse of a spherically symmetric domain wall for the case S=0.1 to zeroth

order (solid line) and second order (dashed Line)
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